

Next Generation Workload Mangement System for Big Data

Kaushik De Univ. of Texas at Arlington

BNL HPC Workshop June 4, 2013

Big Data

- What is Big Data?
 - Many definitions much hype
 - Common denominator large data volumes
 - Huge variation in how Big Data applies to different scientific disciplines
- Focus of this talk
 - Specific Big Data use case in science == large data volume in highly distributed heterogeneous computing environment for collaborative science

Why this Use Case?

- Large data volume in science
 - Growth in storage and processing power has enabled scientific studies with huge data volumes
 - Almost every scientific discipline has benefited
- Collaborative science
 - Scientific problems impossible for small groups to solve can now be tackled by large collaborations
- Distributed computing infrastructure
 - Can grow/shrink to meet changing needs
 - But often simply to pool resources

Why WMS for Big Data?

- Workload Management System (WMS)
 - Most Big Data paradigms assume individual researcher (or small group) using large data store
 - Collaborative science requires new model
 - Complex data usage models
 - Multiple custom applications to be supported
 - Data is distributed and accessed worldwide
 - Large number of users requiring quick turn-around
 - Multi-step work flows/data processing
 - Flexible breakdown of processing ...
 - Each requirement leads to a different specialized product – WMS provides integrated solution

A Successful Example

PanDA

- Production and Distributed Analysis system developed for the ATLAS experiment at the LHC
- Deployed on WLCG resources
- Now also used by AMS and CMS experiments
- Common Analysis Framework project with CERN IT
- Large data volume hundreds of petabytes
- Distributed resources hundreds of computing centers worldwide
- Collaborative thousands of scientific users
- Complex work flows, multiple applications, flexible processing chunks, fast turn-around ...

References

- https://twiki.cern.ch/twiki/bin/viewauth/Atlas/PanDA
- http://www.usatlas.bnl.gov/twiki/bin/view/PanDA/WebHome
- http://panda.cern.ch:25880/server/pandamon/query
- Recent Improvements in the ATLAS PanDA Pilot, P. Nilsson, CHEP 2012, United States, May 2012
- PD2P: PanDA Dynamic Data Placement for ATLAS,
 T. Maeno, CHEP 2012, United States, May 2012
- Evolution of the ATLAS PanDA Production and Distributed Analysis System, T. Maeno, CHEP 2012, United States, May 2012

A bit of History

- The ATLAS experiment at the LHC
 - Well known for recent Higgs discovery
 - Search for new physics continues
- PanDA project was started in Fall 2005
 - Goal: An automated yet flexible workload management system which can optimally make distributed resources accessible to all users
 - Originally developed for US physicists
- Adopted as the ATLAS wide WMS in 2008 (before first LHC data in 2009)
- In use for all ATLAS computing applications

Why not use Traditional HPC/HTC Systems?

- HPC and HTC has worked well for science in the past using sophisticated batch systems
 - Individual researchers get allocations
 - Executables are built on local architecture
 - Jobs run (scheduled through batch systems)
 - New features (grid access, remote IO, network reservations...) still geared to individual researcher
 - Originally not designed for large data volumes
- LHC experiments chose distributed WLCG model of resources for initial use
- Now turning to HPC/HTC systems through PanDA

PanDA Philosophy

PanDA WMS design goals:

- Achieve high level of automation to reduce operational effort for large collaboration
- Flexibility in adapting to evolving hardware and network configurations over many decades
- Support diverse and changing middleware
- Insulate user from hardware, middleware, and all other complexities of the underlying system
- Unified system for production and user analysis
- Incremental and adaptive software development

PanDA Basics

- Key features of PanDA
 - Pilot based job execution system
 - ATLAS work is sent only after execution begins on CE
 - Minimize latency, reduce error rates
 - Central job queue
 - Unified treatment of distributed resources
 - SQL DB keeps state critical component
 - Automatic error handling and recovery
 - Extensive monitoring
 - Modular design

Simplified View

PanDA Components

- PanDA server
- Database back-end
- PanDA pilot system
 - Job wrapper
 - Pilot factory
- Brokerage
- Dispatcher
- Information system
- Monitoring systems

PanDA Design

- HTTP/S RESTful communication (curl+grid proxy+python) GSI authentication via mod_gridsite
- Workflow is maximally asynchronous

Kaushik De June 4, 2013

What is a Job

- Basic unit of work is a job:
 - Executed on a CPU resource/slot
 - May have inputs
 - Produces outputs
- ProdSys layer above PanDA to create jobs from ATLAS physics 'tasks'
- User analysis work divided into jobs by PanDA
- Pilot may run multiple jobs on request
- Current scale one million jobs per day

What is a Pilot Job

- Lightweight execution environment to prepare CE, request actual payload, execute payload, and clean up
- Handles data stage-in and stage-out between worker node disk and local SE
- Pilot jobs started by Job Scheduler(s); actual ATLAS job (payload) is scheduled when CPU becomes available, leading to low latency
- Monitoring thread, job recovery, experiment specific setup and post processing...

Workload Management

ATLAS Computing Model

10 T1s + 1 TO (CERN)

Cloud = T1 + T2s + T2Ds (except CERN)

T2D = multi-cloud T2 sites

> 2-16 T2s in each Cloud

Task → Cloud
Task brokerage
Jobs → Sites
Job brokerage

Task Brokerage

- Matchmaking per cloud is based on:
 - Free disk space in T1 SE, MoU share of T1
 - Availability of input dataset (a set of files)
 - The amount of CPU resources = the number of running jobs in the cloud (static information system is not used)
 - Downtime at T1
 - Already queued tasks with equal or higher priorities
 - High priority task can jump over low priority tasks

Job Brokerage

- Brokerage policies define job assignment to sites
 - IO intensive or TAPE read -> T1
 - CPU intensive -> T1+T2s
 - Flexible: clouds may allow IO heavy jobs at T2s with low weight
- Matchmaking per site in a cloud
 - Software availability
 - Free disk space in SE, Scratch disk size on Worker Node (WN), Memory size on WN
 - Occupancy = the number of running jobs / the number of queued jobs, and downtime
 - Locality (cache hits) of input files

Job Dispatcher

- High performance/high throughput module
- Send matching job to CE upon pilot request
 - REST non-blocking communication
 - Different from brokerage, which is asynchronous
- Matching of jobs based on
 - Data locality
 - Memory and disk space
- Highest priority job is dispatched

Data Management

- LFC file catalog
- Asynchronous file transfers by ATLAS DDM (DQ2)
 - Dispatch of input files from T1 SE to T2 SE, pre-staging of input files on T1 TAPE SE, aggregation of output files to T1 SE from T2 SE
 - CE CPU is not wasted waiting for transfers pilot job starts only after input files ready, and ends after output is put on local SE
- Reusing input/output files as caches
 - Cache lifetime defined per cloud, job brokerage takes cache hits into account
- HTTPS message exchange between PanDA and DDM

Example of Flexibility

- PanDA supports multiple DDM solutions
 - Caching without LFC lookup
 - Pandamover file transfer (using chained Panda jobs)
 - Direct access if requested (by task or site)
 - Customizable Ism (local site mover)
 - Multiple default site movers are available
 - Flexible dataset sizing/containers for scalability

Performance - Production

Average number of concurrently running jobs per day

User Analysis in PanDA

- Flexibility in job definition
 - Customization of source files: adding new algorithms to ATLAS application (athena) or arbitrary executables
- Fast turnaround for iteration
 - The user submits a user task (jobset) that is converted to many jobs for parallel execution, using pilot system for high throughput
- Jobs go to data
 - No input file dispatch, no output file aggregation from multiple jobs
 - Data Transfer Request Interface or Dynamic Data Placement: supports
 IO intensive workflows
- Dataset container (a set of datasets) as input and output
- Priority and quota system based on user or working group
- Unique users in the last 3 days: 407; 7: 556; 30: 870; 90: 1209

User Analysis Work Flow

Analysis Brokerage

- Works with jobsubset
 - A jobset may be split to be brokered to multiple sites
- Matchmaking per site without cloud-boundaries
 - Scratch disk size on WN, Memory size on WN
 - Software availability, Downtime
 - Occupancy = the number of running jobs / the number of queued jobs
 - Availability of input datasets

Analysis Performance

Average number of concurrently running jobs per day

PD2P – Recent Development

- PD2P = PanDA Dynamic Data Placement
- PD2P used to distribute data for user analysis
 - For production PanDA schedules all data flows, but initial computing model for user analysis was static distribution – PanDA sent jobs to data
 - Soon after LHC data started, we implemented PD2P
- Asynchronous usage based data placement
 - Repeated use of data → additional copies
 - Backlog in processing → additional copies
 - Rebrokerage of queued jobs use new data location
 - Deletion service removes less used data

Cloud Computing and PanDA

- ATLAS cloud computing group set up few years ago to exploit virtualization and clouds
 - PanDA queues in clouds additional resources
 - Tier 3 in clouds good for small institutes
- Excellent progress so far
 - Commercial clouds invaluable Google, EC2
 - Helix Nebula for MC production (CloudSigma, T-Systems and ATOS – all used)
 - Futuregrid (U Chicago), Synnefo cloud (U Vic)
- Personal PanDA analysis queues being set up

Many Other Evolutions

- Federated storage (FAX)
 - Step by step plan to integrate into PanDA
 - First steps already successful
 - Different than current data management model
- JEDI dynamic job definition
 - Higher level service to automatically define jobs from physics tasks
 - New level of brokerage
 - Better resource matching especially MP jobs

•

Next Generation of WMS

- As PanDA usage grows beyond ATLAS:
 - Need common development environment
 - Separate core parts from experiment specific layers
 - Need packaging and regular releases
 - Modular plug-in structure for most components
 - Availability of default plug-in's
- Support both small and large user bases
- Enhance and grow PanDA capabilities
 - Access to HPC resources, cloud resources
 - Integration with networking

DoE ASCR Project

- "Next Generation Workload Management and Analysis System for Big Data"
- 3 year DoE ASCR funding
 - Lead Institution: Brookhaven National Laboratory
 - Lead PI: Alexei Klimentov
 - Principal Investigators:
 - Brookhaven National Laboratory: Alexei Klimentov, Sergei Panitkin, Torre Wenaus, Dantong Yu
 - Argonne National Laboratory: Alexandre Vaniachine
 - The University of Texas at Arlington: Kaushik De, Gergely Zaruba

BigPanDA Work Packages

- WP1 (Factorizing the core): Factorizing the core components of PanDA to enable adoption by a wide range of exascale scientific communities (UTA, K.De)
- WP2 (Extending the scope): Evolving PanDA to support extreme scale computing clouds and Leadership Computing Facilities (BNL, S.Panitkin)
- WP3 (Leveraging intelligent networks): Integrating network services and real-time data access to the PanDA workflow (BNL, D.Yu)
- WP4 (Usability and monitoring): Real time monitoring and visualization package for PanDA (BNL, T.Wenaus)

BigPanDA Development Team

- Core ATLAS PanDA Team:
 - Tadashi Maeno, Paul Nilsson, many others
- New ASCR Hires:
 - BNL: Jaroslava Schovancova
 - UTA: Danila Oleynik, Artem Petrosyan, Mikhail Titov
- Integrated with many international teams:
 - CERN IT CAF, CMS, AMS team
 - NorduGrid, Dubna and Kurchatov teams
- This meeting to discuss future directions